

Available online at www.sciencedirect.com

Journal of Catalysis 214 (2003) 292–307

JOURNAL OF CATALYSIS

www.elsevier.com/locate/jcat

The effect of CO_2 and H_2O on the kinetics of NO reduction by CH_4 over a La₂O₃/γ-Al₂O₃ catalyst

Todd J. Toops, Arden B. Walters, and M. Albert Vannice [∗]

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802-4400, USA Received 13 August 2002; revised 22 October 2002; accepted 4 November 2002

Abstract

NO reduction by CH₄ over a 40% La₂O₃/γ-Al₂O₃ catalyst in the absence and presence of O₂ in the feed was studied. The addition of either CO₂ or H₂O to the feed produced a reversible inhibitory effect on the rate similar to that observed with unsupported La₂O₃; however, the extent of rate inhibition was considerably smaller than on unsupported La_2O_3 . At 973 K, either CO₂ (9%) or H₂O (2%) in the feed decreased activity by about 35% in the absence of O_2 and by only 20% with excess O_2 in the feed. In the absence of O_2 , a reaction mechanism previously proposed for La₂O₃ was altered to include competitive CO₂ and H₂O adsorption and to give the following rate expression for N_2 formation:

 $r_{\text{N}_2} = \frac{k'P_{\text{NO}}P_{\text{CH}_4}}{(1 + K_{\text{NO}}P_{\text{NO}} + K_{\text{CH}_4}P_{\text{CH}_4} + K_{\text{CO}_2}P_{\text{CO}_2} + K_{\text{H}_2\text{O}}P_{\text{H}_2\text{O}})^2}.$

This equation fit the data well, had apparent activation energies of 14–25 kcal*/*mol, and gave thermodynamically consistent enthalpies and entropies of adsorption. Stable rates at 973 K with O₂ and either CO₂ or H₂O in the feed were between 0.94 and 0.99 µmol N₂/s/g catalyst. In the presence of excess O_2 , after CO_2 and H_2O adsorption were again included, a rate equation proposed earlier for La₂O₃ again provided a good fit to the data with H_2O in the feed as well as thermodynamically consistent parameters determined under integral reaction operation. However, with both $CO₂$ and excess $O₂$ in the feed, this rate expression could not provide thermodynamically meaningful parameters from the fitting constants even though it fit the data well. This was attributed to a major contribution from the alumina to the overall rate, because $CO₂$ had no significant effect on NO reduction on alumina, but it inhibited this reaction on La₂O₃. A reaction model was proposed for *γ* -Al₂O₃ that gave the rate expression for total CH₄ disappearance due to both combustion and NO reduction over *γ* -Al₂O₃

$$
(r_{\rm CH_4})_{\rm T} = \frac{k'_{\rm com} P_{\rm CH_4} P_{\rm O_2}^{0.5} + k'_{\rm NO} P_{\rm NO} P_{\rm CH_4} P_{\rm O_2}^{0.5}}{(1 + K'_{\rm NO_2} P_{\rm NO} P_{\rm O_2}^{0.5} + K_{\rm CH_4} P_{\rm CH_4} + K_{\rm O_2}^{0.5} P_{\rm O_2}^{0.5} + K_{\rm CO_2} P_{\rm CO_2} + K_{\rm H_2O} P_{\rm H_2O})^2},
$$

which gave a satisfactory fit to the data along with thermodynamically consistent parameters. The second term in this equation, which represents the rate of N₂ formation, was then combined with the rate equation for N₂ formation on pure La₂O₃ in the presence of O₂ to describe overall catalyst performance, and the data were fit well, assuming that La_2O_3 composed 6.8% of the total surface area, a value close to that of 6.1% obtained from XRD line-broadening calculations.

2003 Elsevier Science (USA). All rights reserved.

Keywords: NO reduction; CH₄; SCR; Kinetics; La₂O₃/Al₂O₃

1. Introduction

 $La₂O₃$ has one of the most active surfaces above 773 K for the selective catalytic reduction (SCR) of NO by CH4 [1–4]; however, its surface area is typically very low, which results in low rates and limits any industrial applications. Dispersing La_2O_3 on Al_2O_3 enhances its surface area and increases reaction rates (g^{-1}), and a 40 wt% La₂O₃/ γ -Al₂O₃ catalyst was the most active at higher temperatures, with rates comparable to those on zeolite catalysts [5,6]. Flue gas components such as $CO₂$ and $H₂O$ can adversely affect SCR of NO on these systems, including La_2O_3 [7], and steam is known to facilitate sintering in γ -Al₂O₃ [8–11]; therefore, it is of interest to determine the impact of $CO₂$ and

Corresponding author. *E-mail address:* mavche@engr.psu.edu (M.A. Vannice).

 $0021-9517/03/$$ – see front matter \odot 2003 Elsevier Science (USA). All rights reserved. doi:10.1016/S0021-9517(02)00092-1

H2O on La2O3*/*Al2O3 catalysts. This study has examined NO reduction by CH₄ over 40% La₂O₃/ γ -Al₂O₃ as well as over the γ -Al₂O₃ support between 773 and 973 K in the presence and absence of O_2 . The standard concentrations of the flue components were the same as in earlier studies of La₂O₃ and Sr-promoted La₂O₃ [7,12–14], i.e., 9% CO₂ and 2% H₂O. SO₂ was not investigated here because it poisoned $La₂O₃$ [7]. Reaction orders were determined along with specific activities and activation energies, and reaction mechanisms accounting for the effects of $CO₂$ and $H₂O$ in the absence or presence of O_2 , as well as the concurrent direct combustion of CH4, were proposed. The equilibrium adsorption constants for CH₄, NO, O_2 , CO₂, and H₂O, which were obtained from the optimized rate expressions, were further analyzed to verify their thermodynamic consistency. The catalysts were characterized before and after the kinetic experiments using X-ray diffraction (XRD), BET surface area measurements, and NO chemisorption.

2. Experimental

The supported catalyst was prepared as described elsewhere with La acetate (Molycorp, 99%, 14.64% in H_2O) as the La source and γ -Al₂O₃ (Englehard, 150 m²/g), using an incipient wetness technique [13,14]. The catalyst was dried at 400 K in air, calcined at 1023 K for 4 h under 50 cm³ (STP) O_2/m in, cooled, and stored in a desiccator. Surface areas from N_2 physisorption, NO chemisorption at 300 K, and XRD patterns of each sample were determined before and after reaction as described elsewhere [7]; however, a brief summary is as follows. XRD spectra were obtained ex situ over a 2*θ* range of 10◦–80◦ at a scan speed of 5.0◦*/*min and a step size of 0.02◦ using a Philips MPD Xray diffractometer with Cu-K_α radiation (40 kV and 20 mA). The N_2 BET isotherms were determined volumetrically in an adsorption system with a base pressure in the sample cell $\leq 1 \times 10^{-5}$ Torr using a Mensor DPG II Model 15000 pressure transducer with 0.01% full scale accuracy. Fresh samples (ca. 0.15 g) were treated for 1 h at 400 K in flowing He, evacuated to the base pressure, cooled to 300 K, and then submerged in a liquid N_2 bath. Chemisorption of NO was measured in the same volumetric system after a standard pretreatment of heating from room temperature to 973 K at 11 K/min under 20 cm³ (STP)/min of 10% O₂ in He, holding for 1 h, evacuating for 30 min, and cooling to 300 K. The sample was evacuated for 1 h at 300 K after the initial isotherm, and a second isotherm was measured to establish reversible adsorption. NO chemisorption on the catalyst after various times on stream was measured after flushing with He at 973 K, cooling to 300 K and measuring NO isotherms and BET surface areas, in that order [7].

The kinetic studies were performed in a reactor system similar to that described previously [15], except that a P-E Sigma 3 gas chromatograph (GC) with a 2.4-m Chromosorb 102 column and a P-E Nelson 1020 integrator were used along with a chemiluminescence NO*^x* analyzer (Thermo Environmental Instr. Inc., Model 42H) to differentiate between NO and $NO₂$ in the effluent [7]. The GC temperature program, i.e., hold at 228 K for 5 min, ramp at 35 K*/*min to 423 K, and hold for 5 min, provided good separation of N_2 , O_2 , NO, CO, CH₄, CO₂, N₂O, and H₂O, although the last peak was not quantifiable [7]. Unless otherwise specified, experiments in the presence of O_2 were performed with 25 mg of catalyst and a feed containing 1.4% NO, 0.35% CH₄, and 1.0% O₂ in He flowing at 45 cm³ (STP)/min. The effects of $CO₂$ and $H₂O$ were studied separately using standard concentrations of 9.0 and 2.0%, respectively. Distilled, deionized water was introduced to the reactor system via He flowing through a saturator held in a Neslab GP-100 constant temperature bath maintained between 305 and 325 K. The stainless steel tubing from the saturator to the reactor and all stainless steel lines downstream of the reactor were heated at 323 K to avoid water condensation. Before the reactor effluent entered the NO_x analyzer, it was diluted 10-fold with He. The gas mixtures used in the experiments were 4.03% NO in He, 9.80% O₂ in He, and 1.0% CH₄ in He, and they were prepared with gases from MG Ind. (99.999%, except for NO, which was $99.0 + %$). The $CO₂$ was also from MG Ind. (99.995%).

The standard catalyst pretreatment involved heating for 1 h at 973 K under 20 cm³ (STP)/min of 10% O₂ in He. Following pretreatment the gas mixture was flowed for at least 30 min before any effluent stream analyses were conducted. NO reduction with CH4 was performed between 773 and 973 K to obtain Arrhenius plots and to examine the effects of $CO₂$ and $H₂O$ on apparent activation energies. A descending, then ascending temperature sequence was used to check for any deactivation. Activity versus time on stream was also monitored to determine both longterm and transient effects of $CO₂$ and $H₂O$ in the feed stream on NO reduction. Partial pressure dependencies of activity on H_2O and CO_2 were determined at three or four different temperatures between 798 and 973 K by varying the inlet partial pressure of one reactant while keeping all other reactant concentrations and the total flow rate constant. The standard feed concentrations were 11 Torr NO (1.4%), 2.7 Torr CH₄ (0.35%), and 7.6 Torr O_2 (1.0%) in He. When the partial pressure of any of these three components was varied with either $CO₂$ or $H₂O$ in the feed stream, the former was held at 68 Torr (9.0%) and the latter at 15 Torr (2.0%). NO was varied from 1.9 to 15 Torr (0.25–2.2%), CH4 from 0.38 to 3.4 Torr $(0.05-0.55\%)$, O_2 from 1.9 to 22 Torr $(0.35-0.55\%)$ 1.8%), CO_2 from 8 to 130 Torr (1.0–17%), and H₂O from 2.3 to 22 Torr (0.3–3.0%).

3. Results

As observed with other La_2O_3 -based catalysts [7,12], $CO₂$ reversibly inhibited the rate of NO reduction by $CH₄$ over supported $La₂O₃$ in either the absence or presence of

Fig. 1. Arrhenius plots characterizing the effect of $CO₂$ on NO reduction by CH₄ over 40% La₂O₃/ γ -Al₂O₃ in (a) the absence of O₂ and (b) the presence of O_2 . Reaction conditions: 1.4% NO, 0.35% CH₄, 0 or 1.0% O_2 , 0 or 9.0% CO₂, balance He; GHSV = 60,000 h⁻¹ in the absence of O₂ and $100,000$ h⁻¹ in the presence of O₂.

 O_2 ; however, the inhibitory effect of CO_2 on the performance of the γ -Al₂O₃ alone was significantly smaller, especially in the presence of O_2 where virtually no decrease in activity was observed. Figs. 1–3 show the Arrhenius plots for 40% La₂O₃/Al₂O₃ and Al₂O₃, while the rates, specific activities, and apparent activation energies in the differential regime, in which all reactant conversions were less than 20% and which is depicted as a solid line in the Arrhenius plots, are reported in Tables 1 and 2. Each gas hourly space velocity (GHSV) was calculated using an approximate catalyst density of 1 $g/cm³$. The effect of $CO₂$ was further examined by monitoring the activity versus time on stream to determine both the long term and the transient nature of the inhibition, as shown in Fig. 4 for La_2O_3/Al_2O_3 and Fig. 5 for Al_2O_3 . With H_2O in the feed, a similar reversible effect on NO reduction was observed, as depicted by the Arrhenius plots in Fig. 6; however, unlike $CO₂$, water also caused considerable reversible inhibition of this reaction over Al_2O_3 . The apparent activation energies, along with 90% probability limits, are reported in Table 1 for La_2O_3/Al_2O_3 and Table 2 for γ -Al₂O₃, and the activity vs time on stream results involving H_2O are displayed in Figs. 5, 7, and 8. In the absence of O_2 , La_2O_3/γ - Al_2O_3 showed surprising behavior during time-on-stream runs when H_2O was added to and deleted from the feed (Fig. 8). While 1.4% NO and 0.35%

Fig. 2. Arrhenius plots for NO reduction by $CH₄$ over γ -Al₂O₃ in the presence of O_2 and with either (a) CO_2 or (b) H_2O in the feed. Reaction conditions: 1.4% NO, 0.35% CH₄, 1.0% O₂, 0 or 2.0% H₂O, balance He; GHSV = 87,000 h⁻¹ with CO₂ in the feed and 110,000 h⁻¹ with H₂O.

CH4 in He were flowed over this catalyst at 973 K, the initial activity increased slightly overnight (point A), as shown in Fig. 8a. Introducing steam into the feed decreased the activity overnight by about 50%, which is behavior consistent with that for unsupported La_2O_3 [7], but when steam was removed from the feed, the activity increased markedly to a value almost double the initial activity (point B). During the next 100 h on stream, the activity slowly declined to equal that during the initial period (point C). This result was investigated further using a modified reaction chamber so that any effects on surface area and NO uptakes could be monitored throughout this reaction sequence [7], and the kinetic sequence with H_2O was reproduced in this modified chamber, as shown in Fig. 8b. The corresponding NO isotherms at 300 K and surface areas measured at the labeled points, I, A, B, and C, are displayed in Fig. 9 and Table 3, respectively, along with the turnover frequency (TOF), which is normalized to the sites capable of irreversible NO adsorption at 300 K, i.e.,

$$
TOF[s^{-1}] = \frac{\text{rate of N}_2 \text{ formation [mol/s g]}}{\text{irreversible NO uptake [mol/g]}}.
$$
 (1)

The relatively constant TOF values indicate that the change in activity can be attributed to a variation in the number of NO chemisorption sites due, most likely, to a change in the surface area of the $La₂O₃$ dispersed on the alumina surface.

Fig. 3. Arrhenius plots for NO reduction by CH₄ over γ -Al₂O₃ in the absence of O_2 and with either (a) CO_2 or (b) H_2O in the feed. Reaction conditions: 1.4% NO, 0.35% CH₄, 0 or 9.0% CO₂, 0 or 2.0% H₂O; GHSV: $50,000$ h⁻¹.

Reaction orders for this supported catalyst were determined in the absence of O_2 at four temperatures between 898 and 973 K following the procedure outlined earlier [7], and these results are tabulated in Table 4, while the experimental data are provided in Fig. 10 for $CO₂$ and Fig. 11 for H₂O. As expected with O_2 in the feed, direct combustion of CH₄ continued to be significant although NO conversions were kept below 20%; therefore, data analysis was conducted assuming integral reactor behavior [13,14]. These apparent reaction orders are also listed in Table 4, and the kinetic data are shown in Figs. 12 and 13.

XRD measurements were used to probe the effects of $CO₂$ and H₂O on the phases present in Al₂O₃-supported La₂O₃. As with unsupported La₂O₃ and Sr-promoted La₂O₃ [7,12], under reaction conditions with $CO₂$ in the feed, bulk transformation from La_2O_3 to an oxycarbonate (II- $La_2O_2CO_3$) phase occurred, as shown by the XRD patterns in Fig. 14. As with unsupported La_2O_3 , the oxycarbonate phase disappeared after $CO₂$ was removed from the feed stream and the La_2O_3 phase was reestablished in either the presence or absence of O_2 ; however, a small remnant of the oxycarbonate phase (at $2\theta = 33.5^{\circ}$) remained in the absence of O_2 . After several experiments with the same sample, it became difficult to separate the catalyst from the quartz wool and a significant amount of quartz was detected by XRD as

Reaction conditions: 1.4% NO, 0.35% CH₄, 0 or 1.0% O₂, 0 or 9.0% CO₂, 0 or 2% H₂O, balance He; GHSV = 60,000 h⁻¹ in the absence of O₂ and $100,000$ h⁻¹ in the presence of O₂.

well, as indicated by the broad quartz peak at $2\theta = 25^\circ$ in the pattern for regenerated La_2O_3 in Fig. 14b. With H_2O in the feed, no bulk phase transformation was observed, which is consistent with previous observations for $La₂O₃$ and $Sr/La₂O₃$ [7,12,16,17]. XRD patterns for pure γ -Al₂O₃ showed no change in the bulk-phase properties.

Table 2 Kinetic behavior for NO reduction by CH₄ over α -Al₂O₃

		Rate (µmol N ₂ /s g \times 10 ³)	Specific activity	E_a (µmol N ₂ /s m ² × 10 ³) (kcal/mol)	
	873 K	973 K	873 K	973 K	
			9% CO ₂ study		
$O2$ absent					
No CO ₂	48	92	0.32	0.61	15 ± 3
With $CO2$	37	74	0.25	0.49	16 ± 3
$O2$ present					
No CO ₂	330	610	2.2	4.1	8.8 ± 2
With $CO2$	320	600	2.1	4.0	9.5 ± 2
		2% H ₂ O study			
$O2$ absent					
No H_2O	48	92	0.32	0.61	$15 + 3$
With H_2O	27	60	0.18	0.40	$17 + 2$
$O2$ present					
No $H2O$	247	611	1.6	4.1	13 ± 2
With H_2O	224	507	1.5	3.4	$17 + 4$

Reaction conditions: 1.4% NO, 0.35% CH₄, 1.0% O₂, 0 or 9.0% CO₂, and 0 or 2% H₂O, balance He; GHSV = 85,000 h⁻¹ with CO₂ in feed and $110,000 h^{-1}$ H₂O.

Fig. 4. Activity vs time on stream in the presence of $CO₂$ during NO reduction by CH₄ over 40% La₂O₃/ γ -Al₂O₃ at 973 K (a) in the absence of O_2 and (b) in the presence of O_2 . Reaction conditions: 1.4% NO, 0.35% CH₄, 0 or 1.0% O₂, and 0 or 9.0% CO₂, balance He; GHSV = 60,000 h⁻¹ in the absence of O₂ and 100,000 h⁻¹ in the presence of O₂.

4. Discussion

The rate inhibition on the 40% La₂O₃/γ-Al₂O₃ catalyst caused by $CO₂$ and $H₂O$ was qualitatively the same as that observed with La_2O_3 and 4% Sr-La₂O₃ [7,12]; however, the degree of inhibition was considerably less with the supported catalyst. Either $CO₂$ or $H₂O$ decreased the activity of unsupported $La₂O₃$ by around 75% in the absence of O_2 and about 50% in the presence of O_2 , whereas the rate inhibition was only about 35% and 20%, respectively, for La₂O₃/Al₂O₃. This reduced degree of inhibition, especially in the presence of O_2 , is a promising result because this supported system is the most industrially relevant of the $La₂O₃$ -based catalysts investigated. When compared to the kinetic performance of other NO_x reduction catalysts that have been tested with H_2O in the feed [18–28], it is apparent that this is one of the most active catalysts for SCR of NO above 773 K with steam present, as indicated in Table 5. The TOFs for the La_2O_3/Al_2O_3 catalyst in this study were calculated from Eq. (1), but in the other studies, the rate was normalized to the concentration of metal cations in the catalyst, when possible. There is very limited information in the literature about the kinetic effects of $CO₂$ on oxide catalysts, as discussed more fully elsewhere [7].

Fig. 5. Activity vs time on stream in the presence of O_2 during NO reduction by CH₄ over γ -Al₂O₃ at 973 K (a) in the presence of CO₂ and (b) in the presence of H₂O. Reaction conditions: 1.4% NO, 0.35% CH₄, 1.0% O_2 , and either 0 or 9.0% CO_2 or 0 or 2% H₂O, balance He; GHSV = $85,000 h^{-1}$.

The activity of alumina for NO reduction by CH4 has been reported earlier [5], and while some studies have examined γ -Al₂O₃ as an NO_x reduction catalyst by itself, its primary utility has been as a support for more active catalysts. It is an attractive support because of its strong thermal stability in oxidizing environments [8–11]; however, as mentioned earlier, steam can facilitate sintering in transitional aluminas. The temperatures were low enough in this study so that no significant sintering was observed with either pure Al_2O_3 or Al_2O_3 -supported $La₂O₃$. Coincidentally, $La₂O₃$ has been used to inhibit steam-induced sintering of alumina [29–32], so the presence of $La₂O₃$ may stabilize its surface at higher temperatures.

It is clear from the kinetic results provided in Tables 1 and 2 that γ -Al₂O₃ can make a significant contribution to NO reduction activity, especially in the presence of $CO₂$ and H2O, and the results in Fig. 8 suggest that there may be a synergistic effect as well. The large increase in activity after removal of $H₂O$ from the feed was unique to this catalyst and was observed only in the absence of O_2 . From the chemisorption results reported in Table 3, it is clear that the surface has a substantially higher concentration of NO adsorption sites after exposure to $H₂O$; however, this concentration decreases with time and reaches the original

Fig. 6. Arrhenius plot characterizing the effect of H_2O on NO reduction by CH₄ over 40% La₂O₃/ γ -Al₂O₃ in (a) the absence of O₂ and (b) the presence of O_2 . Reaction conditions: 1.4% NO, 0.35% CH₄, 0 or 1.0% O_2 , 0 or 2.0% H₂O, balance He; GHSV = 60,000 h⁻¹ in the presence of O₂ and 100,000 h⁻¹ in the absence of O_2 .

level about 50 h after the removal of water from the feed. This behavior is quite reproducible and is most likely due to a $La₂O₃$ redispersion effect that occurs in the absence of O_2 , but not with O_2 in the feed. However, another explanation for this behavior is possible. The results in this study show that the activity doubles only in the absence of $O₂$ with H₂O present and that under these conditions the

Fig. 7. Activity vs time on stream in the presence of H_2O during NO reduction by CH₄ 40% La₂O₃/ γ -Al₂O₃ at 973 K in the presence of O₂. Reaction conditions: 1.4% NO, 0.35% CH4, 1.0% O2, and 0 or 2.0% H2O, balance He; GHSV = $108,000$ h⁻¹.

Fig. 8. Time on stream study of the effect of steam on NO reduction by CH₄ over 40% La₂O₃/ γ -Al₂O₃ at 973 K (a) in the microreactor with GHSV = $56,000$ h⁻¹ and (b) in the chemisorption system with GHSV = 36,000 h⁻¹. Reaction conditions: 1.4% NO, 0.35% CH₄, 0% O₂, 0 or 2.0% H₂O, balance He.

reaction orders on NO increase to near unity, which suggests a lower surface coverage of NO. Earlier experiments have shown that: (a) $La₂O₃$ is susceptible to the loss of surface lattice oxygen [6]; (b) the concentration of surface oxygen vacancies positively affects the NO adsorption behavior [6,33]; (c) NO adsorption is aided by surface O–S groups [6]; and (d) H2O can create OH[−] species on high surface area alumina surfaces [10,34]. With these aspects in mind, it may be that when $H₂O$ was removed from the feed, the high concentration of OH⁻ groups on the Al₂O₃ surface, which were equilibrated with gas-phase $H₂O$, decreases due to dehydroxylation and generates surface oxygen sites, as shown in the equation

$$
2OH-S \leftrightarrow O-S + H_2O-S,\tag{2}
$$

which would increase the concentration of NO adsorption sites after H_2O desorption as shown below (Eq. (8)).

 $T_{\rm T}$

Fig. 9. NO chemisorption at 300 K on 40% La₂O₃/ γ -Al₂O₃ after reaction at points noted in Fig. 7. Reaction conditions: $T = 973$ K, GHSV = 36,000 h−1, and 1.4% NO, 0.35% CH4, 0% O2, 0 or 2% H2O, balance He.

Despite this behavior, one can begin by assuming that the reaction mechanisms and rate laws proposed earlier for unsupported La_2O_3 remain applicable for La_2O_3 dispersed on alumina [35]. The effects of $CO₂$ and $H₂O$ can be easily incorporated into the kinetic rate expression by assuming that these two products compete for adsorption on the active sites. A detailed reaction mechanism in the absence of $O₂$ has been proposed previously [7], and only a shortened form containing the kinetically significant steps for NO reduction by CH4 is shown below,

$$
4[NO + S \xrightarrow{K_{NO}} NO-S]
$$

$$
K_{CH.}
$$
 (3)

$$
CH_4 + S \xrightarrow{2 \to 2} CH_4 - S \tag{4}
$$

NO-S + CH₄-S
$$
\stackrel{k}{\rightarrow}
$$
 HNO-S + CH₃-S (rds) (5)

$$
3NO-S + HNO-S + CH3-S \xrightarrow{\text{4}} 2H2O-S + 2N2 + CO2-S
$$

Reaction conditions: 1.4% NO, 0.35% CH₄, 0 or 1.0% O₂, 0 or 9.0% CO₂, 0 or 2.0% H₂O, balance He; GHSV = 20,000–50,000 h⁻¹ in the absence of O₂ and 90,000–100,000 h⁻¹ in the presence of O₂.

$$
+2S \tag{6}
$$

$$
CO2-S \xrightarrow{1/K_{CO2}} CO2 + S
$$
 (7)

$$
2[H_2O-S \stackrel{1}{\iff} H_2O + S]
$$
 (8)

$$
4NO + CH_4 \rightarrow 2N_2 + 2H_2O + CO_2,
$$
\n⁽⁹⁾

where reaction (5) is the rate-determining step (rds) and K_i represent adsorption equilibrium constants. If adsorbed $CH₄$, NO, and H₂O constitute the principal surface intermediates, so that the resulting site balance for total active site concentration, *L*, is $L = [CH_4-S] + [NO-S] + [CO_2-S] +$ $[H_2O-S] + [S]$, the following rate expression for N₂ formation is derived [14],

$$
r_{\rm N_2} = k'_{\rm NO} P_{\rm NO} P_{\rm CH_4}
$$

× (1 + K_{NO} P_{NO} + K_{CH_4} P_{CH_4} + K_{CO_2} P_{CO_2}
+ K_{H_2O} P_{H_2O})⁻², (10)

Reaction conditions: 1.4% NO, 0.35% CH₄, 0 or 2.0% H₂O, balance He; GHSV = 36,000 h⁻¹. ^a TOF defined as µmol N₂/s/µmol NO_{ad}.

Table 3

Fig. 10. Partial pressure dependencies for NO reduction by CH₄ over 40% La₂O₃/γ -Al₂O₃ in the absence of O₂ but with CO₂ in the feed at (a) 973 K, (b) 948 K, and (c) 923 K. Experimental data are represented by symbols and the rate expression given by Eq. (10) is represented by lines. Reaction conditions: 1.4% NO, 0.35% CH₄, and 9% CO₂, balance He; GHSV = 20,000 h⁻¹.

where $k'_{\text{NO}} = LkK_{\text{NO}}K_{\text{CH}_4}$. As with La₂O₃, differential reactor conditions were maintained throughout the experiments in the absence of O_2 and a straightforward optimization routine could be used to determine the fitting parameters [7,13,14]. The capability of this equation to fit the data is satisfactory and is represented as solid lines in Figs. 10 and 11 for $CO₂$ and $H₂O$, respectively, while the optimized fitting parameters at each temperature are listed in Table 6. The results indicate that surface coverage of oxygen and water are negligible with $CO₂$ in the feed, while coverages of NO, oxygen, and $CO₂$ are very low with $H₂O$ in the feed and can be neglected in the site balance. All but one of these fitting parameters represent equilibrium adsorption constants, so they were further examined for thermodynamic consistency [14]. The entropies and enthalpies of adsorption derived from these constants are listed in Table 7 along with 90% confidence limits, and they were analyzed based on criteria discussed elsewhere to verify they are thermodynamically meaningful [36,37]. These values are also quite consistent with those reported for $La₂O₃$ under similar condi-

tions [7]. The activation energy for the rate constant *k* in the rate-determining step to form a methyl group (Eq. (5)) was 25 ± 9 kcal/mol with CO₂ in the feed, but it could not be determined in the H₂O study because the $K_{\text{NO}}P_{\text{NO}}$ term essentially went to zero.

As discussed elsewhere for La_2O_3 and Sr-promoted La_2O_3 [7,12], both the surface chemistry and the subsequent data analysis become much more complex under leanburn conditions in the presence of O_2 , and here it is even more difficult because Al_2O_3 can also contribute to the kinetics of CH₄ combustion. Both La_2O_3 and Al_2O_3 catalyze the direct oxidation of CH_4 with O_2 , as shown elsewhere [13]; consequently, differential reactor conditions could not be maintained for all reactants at all conditions. Even though NO conversion was always less than 20%, total methane and oxygen conversions were around 50% at times; thus rate data were analyzed assuming an integral reactor design equation to describe the concentration profiles throughout the catalyst bed [13,14]. The rate expressions for both the NO reduction reaction and the $CH₄$ combustion

Fig. 11. Partial pressure dependencies for NO reduction by CH₄ over 40% La₂O₃/γ -Al₂O₃ in the absence of O₂ but with H₂O in the feed at (a) 973 K, (b) 948 K, (c) 923 K, and (d) 898 K. Experimental data are represented by symbols and the rate expression given by Eq. (10) is represented by lines. Reaction conditions: 1.4% NO, 0.35% CH₄, and 2.0% H₂O, balance He; GHSV = 50,000 h⁻¹.

K

reaction were simultaneously utilized to calculate reactant concentrations throughout the catalyst bed and to optimize the fitting parameters in these two rate equations [13,14].

It is again assumed that the surface chemistry and reaction mechanism are the same for both supported and unsupported La_2O_3 and, if so, after the inclusion of molecular CO_2 and H2O adsorption the abbreviated mechanism with all kinetically significant steps is [7,35]

$$
4[NO + S \xrightarrow{K_{NO}} NO-S]
$$
 (11)

$$
2\left[\text{CH}_4 + \text{S} \xrightarrow{\text{K}_{\text{CH}_4}} \text{CH}_4 - \text{S}\right]
$$
\n
$$
(12)
$$

$$
2[O_2 + 2S \xrightarrow{100} 2O-S]
$$

\n K_{NO_2} (13)

$$
3[NO-S + O-S \stackrel{\frown}{\iff} NO_2-S + S]
$$
 (14)

$$
2[NO2-S + CH4-S \xrightarrow{k} HNO2-S + CH3-S] (rds) (15)
$$

$$
2HNO2-S + 2CH3-S + NO-S + NO2-S + O-S
$$

$$
\stackrel{\text{A}}{\Longleftrightarrow} 2\text{CO}_2 - \text{S} + 4\text{H}_2\text{O} - \text{S} + 2\text{N}_2 + \text{S} \tag{16}
$$

$$
2[CO2-S \xrightarrow{2} CO2 + S]
$$
 (17)

$$
4[H_2O-S \stackrel{P}{\Longleftrightarrow} H_2O+S]
$$
 (18)

$$
4NO + 2CH_4 + O_2 \rightarrow 2N_2 + 4H_2O + 2CO_2. \tag{19}
$$

With reaction (15) as the rds and CH₄–S, NO–S, O–S, $CO₂$ –S, and H₂O–S as the principal surface species in the site balance, the derived rate expression for N_2 formation is

$$
r_{\rm N_2} = (Lk K_{\rm NO_2} K_{\rm NO} K_{\rm CH_4} K_{\rm O_2}^{0.5}) P_{\rm NO} P_{\rm CH_4} P_{\rm O_2}^{0.5}
$$

× $(1 + K_{\rm NO} P_{\rm NO} + K_{\rm CH_4} P_{\rm CH_4} + K_{\rm CO_2} P_{\rm CO_2}$
+ $K_{\rm H_2O} P_{\rm H_2O} + K_{\rm O_2}^{0.5} P_{\rm O_2}^{0.5})^{-2}$. (20)

Based on the stoichiometry in Eq. (19), this expression relates directly to CH4 disappearance due to NO reduction because $r_{N_2} = (r_{CH_4})_{N_2} = d[N_2]/dt = -d[CH_4]/dt$. This rate expression can be combined with that for CH₄ disappearance

Fig. 12. Partial pressure dependencies for NO reduction by CH₄ over 40% La₂O₃/γ-Al₂O₃ with O₂ and CO₂ in the feed: (a) CO₂, (b) CH₄, (c) NO, and (d) O2. Experimental data are represented by symbols and the rate expression given by Eq. (24) is represented by lines. Reaction conditions: 1.4% NO, 0.35% CH₄, 1.0% O₂, and 9% CO₂, balance He; GHSV = $90,000$ h⁻¹.

due to direct oxidation [13] to give the rate of total methane disappearance,

$$
(r_{\text{CH}_4})_T = (k'_{\text{com}} P_{\text{CH}_4} P_{\text{O}_2}^{0.5} + k'_{\text{NO}} P_{\text{NO}} P_{\text{CH}_4} P_{\text{O}_2}^{0.5})
$$

× $(1 + K_{\text{NO}} P_{\text{NO}} + K_{\text{CH}_4} P_{\text{CH}_4} + K_{\text{O}_2}^{0.5} P_{\text{O}_2}^{0.5}$
+ $K_{\text{CO}_2} P_{\text{CO}_2} + K_{\text{H}_2\text{O}} P_{\text{H}_2\text{O}})^{-2}$, (21)

where $k'_{\text{com}} = Lk'K_{\text{CH}_4}K_{\text{O}_2}^{0.5}$ and $k'_{\text{NO}} = LkK_{\text{NO}_2}K_{\text{NO}} \times$ $K_{CH4} K_{O2}^{0.5}$ [7,14]. The partial pressure of each component can be quantitatively related to P_{CH_4} , and a commercial optimization program (Scientist 2.01, Micromath Sci. Software) was used to obtain the fitting parameters in this complex rate expression, assuming integral reactor behavior to calculate concentration gradients and evaluate performance, as described elsewhere [7,13,14].

In the presence of H_2O this rate law provided a very good fit, as shown in Fig. 13, and the optimized rate constants are listed in Table 6, while the thermodynamic parameters are given in Table 7. Due to the inclusion of K_{NO_2} in the lumped rate constant, it was not possible to

calculate the activation energy for the rds described by Eq. (15). With $CO₂$ in the feed this rate expression could fit the experimental data satisfactorily but, in contrast, some of the enthalpies and entropies were thermodynamically inconsistent [14,36,37], so this model had to be rejected and other alternatives considered. Because CO2 had little effect on the SCR of NO over γ -Al₂O₃ with O₂ present, as shown in Fig. 2, it is hypothesized that the contribution from Al_2O_3 became increasingly significant as $CO₂$ suppressed the rate on $La₂O₃$, thus explaining the inconsistent thermodynamic behavior. This inhibition by $CO₂$ may well be due to the formation of a bulk lanthanum oxycarbonate, $La_2O_2CO_3$, which can form if $CO₂$ concentrations are high enough [7]. Fig. 14 verifies that $La_2O_2CO_3$ was indeed present.

A partial pressure study was then conducted with *γ* - Al_2O_3 to determine a rate law describing the kinetic behavior of NO reduction by CH₄, and the experimental data are displayed in Fig. 15 while reaction orders are listed in Table 8. Eq. (21) proved to be unsuccessful both in terms of quality of fit and in thermodynamic consistency, and the

Fig. 13. Partial pressure dependencies for NO reduction by CH₄ over 40% La₂O₃/γ-Al₂O₃ with O₂ and H₂O in the feed: (a) H₂O, (b) CH₄, (c) NO, and (d) $O₂$. Experimental data are represented by symbols and the rate expression given by Eq. (23) is represented by lines. Reaction conditions: 1.4% NO, 0.35% CH₄, 1.0% O₂, and 2.0% H₂O, balance He; GHSV = 100,000 h⁻¹.

fit was especially poor with respect to the NO partial pressure, suggesting that a different N-containing intermediate may predominate on the surface of γ -Al₂O₃. Studies of NO on alumina have suggested that $NO₂$ species may have strong interactions with the γ -Al₂O₃ surface [6,38]; thus, one might propose that adsorbed $NO₂$, rather than $NO₁$ is the most abundant N-containing species. With this and the same earlier assumptions about other surface species, the rate law can be derived for N_2 formation on γ -Al₂O₃ [14],

$$
r_{\rm N_2} = (Lk K_{\rm NO_2} K_{\rm NO} K_{\rm CH_4} K_{\rm O_2}^{0.5}) P_{\rm NO} P_{\rm CH_4} P_{\rm O_2}^{0.5}
$$

× $(1 + K_{\rm NO_2}^{\prime} P_{\rm NO} P_{\rm O_2}^{0.5} + K_{\rm CH_4} P_{\rm CH_4} + K_{\rm CO_2} P_{\rm CO_2}$
+ $K_{\rm H_2O} P_{\rm H_2O} + K_{\rm O_2}^{0.5} P_{\rm O_2}^{0.5})^{-2}$, (22)

where $K'_{\text{NO}_2} = K_{\text{NO}_2} K_{\text{NO}} K_{\text{O}_2}^{0.5}$. This can be combined with the combustion rate expression [13] to yield the rate equation for total CH₄ disappearance over just the Al_2O_3 surface,

$$
(r_{\text{CH}_4})_{\text{T}} = (k'_{\text{com}} P_{\text{CH}_4} P_{\text{O}_2}^{0.5} + k'_{\text{NO}} P_{\text{NO}} P_{\text{CH}_4} P_{\text{O}_2}^{0.5})
$$

× $(1 + K'_{\text{NO}_2} P_{\text{NO}} P_{\text{O}_2}^{0.5} + K_{\text{CH}_4} P_{\text{CH}_4} + K_{\text{O}_2}^{0.5} P_{\text{O}_2}^{0.5})$

$$
+ K_{\rm CO_2} P_{\rm CO_2} + K_{\rm H_2O} P_{\rm H_2O} \right)^{-2}, \tag{23}
$$

where $k'_{\text{com}} = Lk'K_{\text{CH}_4}K_{\text{O}_2}^{0.5}$ and $k'_{\text{NO}} = LkK_{\text{NO}_2}K_{\text{NO}} \times$ $K_{CH4} K_{O2}^{0.5}$. This rate law provided a good fit for the data with alumina, as depicted by the lines in Fig. 15, and the optimized rate constants are listed in Table 6 along with their units. Tests for thermodynamic consistency were limited to just the CH₄ equilibrium adsorption constant because the optimization routine returned zero values for $K_{\text{O}_2}P_{\text{O}_2}$ and K_{CO} , P_{CO} , $(K_{\text{H}_2O}P_{\text{H}_2O})$ was not varied), and this indicated a somewhat higher heat of adsorption for CH4 on alumina of 32 kcal*/*mol.

At this point it is perhaps appropriate to assess the implications of the values listed in Table 7 and to determine what can be said about the nature of the active sites on a lanthana surface. The heats of adsorption (and entropies) obtained from the fitting parameters for NO, O_2 , CO_2 , and H_2O on a lanthana surface are reasonable, although no experimental values exist for comparison, but the heats of adsorption indicated for CH4 are far too large for nondissociative adsorp-

Fig. 14. XRD patterns characterizing the effects of CO₂ on the phases present in 40% La₂O₃/*γ* -Al₂O₃ (a) in the absence of O₂ and (b) in the presence of O₂. Lines represent unique peaks for La₂O₃ (\cdots) and La₂O₂CO₃ (–). Symbols represent characteristic peaks for La₂O₃ (\blacktriangledown , \triangledown) and II-La₂O₂CO₃ (\blacklozenge , \lozenge), with filled symbols representing principal peaks.

tion. Consequently, dissociative adsorption is implied, either homolytic or heterolytic, but it occurs at a single "site" to be consistent with our model. Theoretical calculations of heterolytic CH₄ adsorption on La_2O_3 and Al_2O_3 by Capitan et al. have indicated heats of adsorption of 18–21 kcal*/*mol on a lanthana surface and 22–28 kcal*/*mol on an alumina surface [39]. Not only are these values quite close to those in Table 7, but that calculated for alumina is also larger, again consistent with Table 7. Earlier calculations by Ito et al. estimated a heat of adsorption for CH4 on MgO of 23 kcal*/*mol for heterolytic adsorption on a coordinatively unsaturated (cus) $Mg^{2+}-O^{2-}$ site pair [40]. A detailed discussion of the sites that can exist on a lanthana surface has recently been provided and various types of oxygen vacancies were identified [41]. An oxygen vacancy would constitute a cus site, and the possibility that this could be an active site, especially since NO and $O₂$ adsorption can also occur on such a site, has been considered elsewhere [6]. Thus, one reasonable modification of the original models shown in steps (3)– (9) and steps (11) – (19) that would reconcile the heat of CH₄ adsorption, yet retain the rate expression, is to alter steps (4) and (5) to

$$
CH_4 + S \xleftrightarrow{K_{CH_4}} CH_3^{\ominus} - S - H^{\oplus},
$$
 (4a)

NO-S + CH₃<sup>$$
\ominus
$$</sup>-S-H ^{\oplus} \xrightarrow{k} HNO-S-H + CH₃-S (rds);
(5a)

and steps (12) and (15) to

$$
2\left[CH_4 + S \xrightarrow{K_{CH_4}} CH_3^{\ominus} - S - H^{\oplus}\right],\tag{12a}
$$

Table 5 Comparison of NO_x reduction catalysts in the presence of O₂ and H₂O

Catalyst	Temp	Reductant		H_2O	N _O	O ₂	Bal	N_2 Rate	$N2$ Activity	TOF	GHSV	$\alpha^{\rm a}$	Reference
	(K)		$\%$	$\%$	$\%$	$\%$		μ mol/s g \times 10 ³	μ mol/s m ² × 10 ³	s^{-1} $\times 10^3$	h^{-1}	$\%$	
La_2O_3/Al_2O_3	923	CH ₄	0.35	2.0	1.4	1.0	He	770	8.1	17	100,000	33	This study
Y_2O_3	923	CH ₄	0.40	2.0	0.40	0.40	He	60	0.50	n/a ^e	30,000	12	$[18]$
Co/Al ₂ O ₃	923	C_3H_6	0.06	20	0.07	3.0	N_2	75	0.46	n/a ^e	21,000	n/a ^f	$[19]$
$La2O3/Al2O3$	873	CH ₄	0.35	2.0	1.4	1.0	He	420	4.4	9.1	100,000	39	This study
$Co/ZSM-5$	873	CH ₄	0.10	0°	0.10	2.0	He	67 ^d	n/a^b	n/a ^e	40,000	14	$[20]$
Co-La/ZSM-5	873	CH ₄	0.10	0°	0.10	2.0	He	104 ^d	n/a ^b	n/a ^e	40,000	21	$[20]$
$Ce-Ag/ZSM-5$	873	CH ₄	0.50	8.3	0.50	2.5	He	60 ^d	n/a^b	2.4	7,500	31	$[21]$
$In/ZSM-5$	873	CH ₄	0.10	10	0.10	10	He	15 ^d	n/a ^b	n/a ^e	30,000	n/a ^f	$[22]$
$Co/ZSM-5$	873	CH ₄	0.10	2.0	0.09	2.5	He	70 ^d	n/a^b	0.21	30,000	9	$[23]$
Co/Ferrierite	873	CH ₄	0.10	2.0	0.09	2.5	He	101 ^d	n/a^b	0.30	30,000	14	$[23]$
Co/Al ₂ O ₃	873	C_3H_6	0.06	20	0.07	3.0	N ₂	98	0.60	n/a ^e	21,000	n/a ^f	$[19]$
$Sn-Co/Al_2O_3$	873	C_3H_6	0.06	20	0.07	3.0	N_2	84	0.51	n/a ^e	21,000	n/a ^f	$[19]$
La_2O_3/Al_2O_3	823	CH ₄	0.35	2.0	1.4	1.0	He	142	1.5	3.1	100,000	39	This study
Co/Ferrierite	823	CH ₄	0.10	2.0	0.40	2.5	He	60	n/a ^b	2.7	30,000	17	$[24]$
Cu/Al ₂ O ₃	823	C_3H_6	0.20	5.0	0.2	5.0	He	56	n/a ^b	0.30	15,000 ^d	14	$[25]$
Co/Al_2O_3	823	C_3H_6	0.06	20	0.07	3.0	N_2	75	0.46	n/a ^e	21,000	n/a ^f	$[19]$
$Sn-Co/Al_2O_3$	823	C_3H_6	0.06	20	0.07	3.0	N_2	88	0.54	n/a ^e	21,000	n/a ^f	$[19]$
Ag/Al_2O_3	823	C_3H_6	0.10	3.0	0.10	5.0	N_2	250	1.3	n/a ^e	40,000	25	$[26]$
La_2O_3/Al_2O_3	773	CH ₄	0.35	2.0	1.4	1.0	He	37	0.39	0.81	100,000	37	This study
Fe/ZSM-5	773	C_4H_{10}	0.50	10	0.20	3.0	He	290	n/a^b	0.60	42,000	14	$[27]$
Fe/ZSM-5	773	C_4H_{10}	0.20	20	0.20	3.0	He	990	n/a ^b	2.5	42,000	> 9	$[28]$
Co/Al_2O_3	773	C_3H_6	0.06	20	0.07	3.0	N_2	19	0.12	n/a ^e	21,000	n/a ^f	$[19]$
$Sn-Co/Al_2O_3$	773	C_3H_6	0.06	20	0.07	3.0	N_2	75	0.46	n/a ^e	21,000	n/a ^f	$[19]$

 a Defined in Eq. (1).

^b Specific surface area not reported.

^c Steamed for 24 h in 114 Torr of H₂O at 1073 K.
d Assumed catalyst density of 1 g/cm³.

^e Neither NO uptake nor reactive sites reported.

^f CH4 conversion data not reported.

$$
2[NO2-S + CH3\ominus-S-H\oplus + HNO2-S + CH3-S]
$$
 (rds),
(15a)

where S represents an oxygen vacancy with its neighboring atoms.

Finally, with satisfactory rate expressions for NO reduction in the presence of O_2 and CO_2 over both La_2O_3 [7] and γ -Al₂O₃, one should be able to fit the rate data in Fig. 12 using the rate constants from the two independent optimization routines if the appropriate contribution from each surface is known. Since the rates are presented on an areal basis, the two rate expressions must be multiplied by weighting factors corresponding to the fractional surface area of each oxide such that the overall rate for $CH₄$ disappearance over 40% $\text{La}_2\text{O}_3/\gamma$ -Al₂O₃ is represented by

$$
r_{\text{La}_2\text{O}_3/\text{Al}_2\text{O}_3} = Xr_{\text{La}_2\text{O}_3} + (1 - X)r_{\text{Al}_2\text{O}_3},\tag{24}
$$

where $r_{\text{L}a_2\text{O}_3}$ is defined by Eq. (21), $r_{\text{Al}_2\text{O}_3}$ is defined by Eq. (23), and *X* is the area fraction of La_2O_3 in the catalyst. Using Eq. (24), *X* was optimized to fit the data, as shown in Fig. 12, this yielded a value of 0.068 for the area fraction of La₂O₃. This estimate of the La₂O₃ area fraction indicates that even though a 40 wt% loading of La_2O_3 represents $1\frac{1}{2}$ theoretical monolayers, there is considerable agglomeration, which exposes a large portion of the γ -Al₂O₃. This is consistent with XRD results because line-broadening analyses were conducted on the XRD patterns using the Scherrer equation to calculate the crystallite size of La_2O_3 and Al_2O_3 in the supported sample [14,42]. The average crystallite size for *γ* -Al2O3 was 9.2 nm, which translates into 168 m2*/*g and is consistent with the BET surface area of $150 \text{ m}^2/\text{g}$, while the average crystallite size for La_2O_3 was 56 nm, which indicates a surface area of $16.4 \text{ m}^2/\text{g}$. Based on these two values and a 40 wt% $La₂O₃$ loading, the estimated fraction of surface area comprosed of La_2O_3 is 0.061, which is in good agreement with the *X* value from optimization.

5. Summary

The reversible inhibitory effect on the rate of NO reduction by CH₄ over 40% La₂O₃/ γ -Al₂O₃ due to either CO₂ or H₂O is similar to that observed with unsupported La₂O₃; however, the extent of rate inhibition is considerably smaller compared to the unsupported catalyst. With no O_2 in the feed, a previous reaction model for La_2O_3 was able to describe the kinetic behavior very well for all components after competitive $CO₂$ and $H₂O$ adsorption was incorporated

^a Units for k'_{NO} are µmol N₂ (s m² Torr²)⁻¹ in the absence of O₂ and µmol N₂ (s m² Torr^{2.5})⁻¹ in the presence of O₂.
^b Units for k'_{com} are µmol CH₄ (s m² Torr^{1.5})⁻¹.

com are µmol CH₄ (s m² Torr^{1.5})⁻¹.

^c Units for K'_{NO_2} (defined in Eq. (22)) are Torr^{-1.5} and apply only to *γ* -Al₂O₃.

Table 7 Enthalpies and entropies of adsorption based on the equilibrium adsorption constants from Table 6 and a previous study in the absence of $O₂$ with no $CO₂$ or $H₂O$ in the feed^a

^a Values of ∆*H*[°]_{ad} are in kcal/mol, values of ∆S[°]_{ad}—cal/mol K.

^b Confidence limits of 90%.

into the model to give the following rate expression:

$$
r_{\rm N_2} = k' P_{\rm NO} P_{\rm CH_4}
$$

× $(1 + K_{\rm NO} P_{\rm NO} + K_{\rm CH_4} P_{\rm CH_4} + K_{\rm CO_2} P_{\rm CO_2}$
+ $K_{\rm H_2O} P_{\rm H_2O}$)⁻².

This equation fit the data well and gave thermodynamically consistent parameters.

With excess O_2 in the feed, when H_2O was also added, a rate equation proposed earlier for La_2O_3 was capable of providing a good fit of the data with thermodynamically consistent parameters under integral reaction operation. However, with both $CO₂$ and excess $O₂$ in the feed, this rate expression for La_2O_3 could not provide thermodynamically meaningful parameters from the fitting constants. This was attributed to a major contribution from the alumina because $CO₂$ had no significant effect on the reaction over alumina, but it inhibited that on La_2O_3 . For Al_2O_3 , the reaction model was altered by assuming that $NO₂$, rather than NO, was the principal N-containing intermediate on the alumina surface. This led to the rate expression for total CH4 disappearance due to both NO reduction and combustion on γ -Al₂O₃

$$
(r_{\text{CH}_4})_T = (k'_{\text{com}} P_{\text{CH}_4} P_{\text{O}_2}^{0.5} + k'_{\text{NO}} P_{\text{NO}} P_{\text{CH}_4} P_{\text{O}_2}^{0.5})
$$

× $(1 + K'_{\text{NO}_2} P_{\text{NO}} P_{\text{O}_2}^{0.5} + K_{\text{CH}_4} P_{\text{CH}_4} + K_{\text{O}_2}^{0.5} P_{\text{O}_2}^{0.5}$
+ $K_{\text{CO}_2} P_{\text{CO}_2} + K_{\text{H}_2\text{O}} P_{\text{H}_2\text{O}})^{-2}$,

Fig. 15. Partial pressure dependencies in excess CO₂ for NO reduction by CH₄ over γ -Al₂O₃ with O₂ in the feed for (a) CO₂, (b) CH₄, (c) NO, and (d) O₂. Experimental data are represented by symbols and the expression given by Eq. (23) is represented by lines. Reaction conditions: 1.4% NO, 0.35% CH4, 1.0% O_2 , and 9% CO_2 , balance He; GHSV = 85,000 h⁻¹.

which gave satisfactory fits to the data and thermodynamically consistent parameters, assuming that dissociative CH4 adsorption occurred on a site which presumably consists of an oxygen vacancy and its neighboring atoms. This equation was then combined with the rate equation describing NO reduction on pure La_2O_3 in the presence of O_2 , and the data were fit well, assuming that La_2O_3 occupied 6.8% of the total surface area, a value in good agreement with that of 6.1% obtained from XRD line-broadening calculations.

Acknowledgment

This study was supported by the National Science Foundation under Grant CTS-9633752.

Reaction orders for NO reduction by CH_4 over γ -Al₂O₃ in the presence of $O₂$ with $CO₂$ in the feed

Table 8

Reaction conditions: 1.4% NO, 0.35% CH4, 1.0% O2, 9.0% CO2, balance He; GHSV = $85,000$ h⁻¹.

References

- [1] X. Zhang, A.B. Walters, M.A. Vannice, Appl. Catal. B 4 (1994) 237.
- [2] X. Zhang, A.B. Walters, M.A. Vannice, J. Catal. 155 (1995) 290.
- [3] X. Zhang, A.B. Walters, M.A. Vannice, Catal. Today 27 (1996) 41.
- [4] S.-J. Huang, A.B. Walters, M.A. Vannice, Appl. Catal. B 17 (1998) 183.
- [5] C. Shi, A.B. Walters, M.A. Vannice, Appl. Catal. B 14 (1997) 175.
- [6] S.-J. Huang, A.B. Walters, M.A. Vannice, Appl. Catal. B 26 (2000) 101.
- [7] T.J. Toops, A.B. Walters, M.A. Vannice, Appl. Catal. B 38 (2002) 183.
- [8] R.B. Bagwell, G.L. Messing, J. Am. Ceram. Soc. 82 (1999) 825.
- [9] M. Pijolat, M. Dauzat, M. Soustelle, Solid State Ionics 50 (1992) 31.
- [10] J.M. McHale, A. Navrotsky, J. Phys. Chem. B 101 (1997) 603.
- [11] W.-P. Tai, T. Watanabe, J. Am. Ceram. Soc. 82 (1999) 245.
- [12] T.J. Toops, A.B. Walters, M.A. Vannice, Catal. Lett. 82 (2002) 45.
- [13] T.J. Toops, A.B. Walters, M.A. Vannice, Appl. Catal. A 233 (2002) 125.
- [14] T.J. Toops, PhD thesis, Pennsylvania State University, 2001.
- [15] T.J. Toops, A.B. Walters, M.A. Vannice, Catal. Lett. 64 (2000) 65.
- [16] B. Klingenberg, M.A. Vannice, Chem. Mater. 8 (1996) 2755.
- [17] M.P. Rosynek, D.T. Magnuson, J. Catal. 46 (1977) 402.
- [18] M.D. Fokema, J.Y. Ying, Appl. Catal. B. 18 (1998) 71.
- [19] L. Chen, T. Horiuchi, T. Mori, Catal. Lett. 72 (2001) 71.
- [20] P. Budi, R. Howe, Catal. Today 38 (1997) 175.
- [21] Z. Li, M. Flytzani-Stephanopolous, Appl. Catal. B 22 (1999) 35.
- [22] E. Kikuchi, M. Ogura, N. Aratani, Y. Sugiura, S. Hiromoto, K. Yogo, in: G. Centi, S. Perathoner, C. Christani, P. Forzatti (Eds.), Environmental Catalysis, Rome, Italy, 1995, p. 27.
- [23] Y. Li, J.N. Armor, Appl. Catal. B 5 (1995) L257.
- [24] Y. Li, J.N. Armor, J. Catal. 150 (1994) 376.
- [25] E.A. Efthimidias, G.D. Lionta, S.C. Christoforou, I.A. Vasalos, Catal. Today 40 (1998) 15.
- [26] A. Martinez-Arias, M. Fernandez-Garcia, A. Iglesias-Juez, J.A. Anderson, J.C. Conesa, J. Soria, Appl. Catal. B 28 (2000) 29.
- [27] H.-Y. Chen, W.M.H. Sachtler, Catal. Today 42 (1998) 73.
- [28] X. Feng, W.K. Hall, J. Catal. 166 (1997) 368.
- [29] M. Pijolat, M. Dauzat, M. Soustelle, Solid State Ionics 50 (1992) 31.
- [30] H. Schaper, D.J. Amesz, E.B.M. Doesburg, L.L. Van Reijen, Appl. Catal. 9 (1984) 129.
- [31] M. Bettman, R.E. Chase, K. Otto, W.H. Weber, J. Catal. 117 (1989) 447.
- [32] H. Schaper, E.B.M. Doesburg, L.L. Van Reijen, Appl. Catal. 7 (1983) 211.
- [33] B. Klingenberg, M.A. Vannice, Appl. Catal. B 21 (1999) 19.
- [34] H. Wijnja, C.P. Schulthess, Spectrochim. Acta Part A 55 (1999) 861.
- [35] M.A. Vannice, A.B. Walters, X. Zhang, J. Catal. 159 (1996) 119.
- [36] M. Boudart, AIChE J. 18 (1972) 465.
- [37] M.A. Vannice, S.H. Hyun, B. Kalpakci, W.C. Liauh, J. Catal. 56 (1979) 358.
- [38] W.S. Klijstra, D.S. Brands, E.K. Poels, A. Bliek, J. Catal. 171 (1997) 208.
- [39] M.J. Capitan, J.A. Odriozola, A. Marquez, J.F. Sanz, J. Catal. 156 (1995) 273.
- [40] T. Ito, T. Tashiro, T. Kawasaki, M. Watanabe, K. Toi, H. Kobayashi, J. Phys. Chem. 95 (1991) 4476.
- [41] S.-J. Huang, A.B. Walters, M.A. Vannice, J. Catal. 192 (2000) 29.
- [42] B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, MA, 1956.